pub enum LineLine<S> where
S: EuclideanSpace, {
Point(S),
Line(Line<S>),
}
Expand description
Intersection of lines.
Variants
Point(S)
Line(Line<S>)
Implementations
sourceimpl<S> LineLine<S> where
S: EuclideanSpace,
impl<S> LineLine<S> where
S: EuclideanSpace,
Trait Implementations
sourceimpl<S: Clone> Clone for LineLine<S> where
S: EuclideanSpace,
impl<S: Clone> Clone for LineLine<S> where
S: EuclideanSpace,
impl<S: Copy> Copy for LineLine<S> where
S: EuclideanSpace,
impl<S> StructuralPartialEq for LineLine<S> where
S: EuclideanSpace,
Auto Trait Implementations
impl<S> RefUnwindSafe for LineLine<S> where
S: RefUnwindSafe,
<S as EuclideanSpace>::CoordinateSpace: RefUnwindSafe,
impl<S> Send for LineLine<S> where
S: Send,
<S as EuclideanSpace>::CoordinateSpace: Send,
impl<S> Sync for LineLine<S> where
S: Sync,
<S as EuclideanSpace>::CoordinateSpace: Sync,
impl<S> Unpin for LineLine<S> where
S: Unpin,
<S as EuclideanSpace>::CoordinateSpace: Unpin,
impl<S> UnwindSafe for LineLine<S> where
S: UnwindSafe,
<S as EuclideanSpace>::CoordinateSpace: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.