1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
//! **Plexus** is a highly composable library for polygonal mesh processing.
//!
//! Versions of Plexus in the `0.0.*` series are experimental and unstable.
//! Consider depending on the development branch of the repository. See [the
//! website][website] for the latest information and documentation.
//!
//! [website]: https://plexus.rs
// TODO: Remove build script and use GATs on stable when available. See
// https://github.com/rust-lang/rust/issues/44265
#![cfg_attr(all(nightly, feature = "unstable"), feature(generic_associated_types))]
// This lint is a bit subjective. Using `next` is equivalent, but the Plexus
// authors find `nth(0)` more clear, especially as part of a non-trivial
// iterator expression. This may be revisited though.
#![allow(clippy::iter_nth_zero)]
#![doc(html_favicon_url = "https://plexus.rs/img/favicon.ico")]
#![doc(html_logo_url = "https://plexus.rs/img/plexus.svg")]
pub mod buffer;
pub mod builder;
pub mod constant;
pub mod encoding;
mod entity;
pub mod geometry;
pub mod graph;
pub mod index;
pub mod integration;
pub mod primitive;
mod transact;
use arrayvec::ArrayVec;
use itertools::{self, Itertools, MinMaxResult, MultiPeek};
use std::borrow::Borrow;
use std::fmt::Debug;
use crate::entity::view::ClosedView;
pub mod prelude {
//! Re-exports of commonly used types and traits.
//!
//! Importing the contents of this module is recommended, especially when
//! working with generators and iterator expressions, as those operations
//! are expressed mostly through traits.
//!
//! # Traits
//!
//! Traits from the [`primitive`] module for generating and decomposing
//! iterators of topological data (e.g., [`Trigon`], [`Tetragon`], etc.) are
//! re-exported so that functions in iterator expressions can be used more
//! easily.
//!
//! Traits for (de)constructing [`MeshBuffer`]s and [`MeshGraph`]s are
//! re-exported. These traits allow mesh types to be constructed from raw
//! buffers and buffers to be re-indexed.
//!
//! Extension traits are also re-exported.
//!
//! # Types
//!
//! The [`Selector`] `enum` and its variants are re-exported for
//! convenience.
//!
//! [`MeshBuffer`]: crate::buffer::MeshBuffer
//! [`MeshGraph`]: crate::graph::MeshGraph
//! [`Selector`]: crate::graph::Selector
//! [`Tetragon`]: crate::primitive::Tetragon
//! [`Trigon`]: crate::primitive::Trigon
//! [`primitive`]: crate::primitive
pub use crate::buffer::{
FromRawBuffers as _, FromRawBuffersWithArity as _, IntoFlatIndex as _,
IntoStructuredIndex as _,
};
pub use crate::builder::{FacetBuilder as _, MeshBuilder as _, SurfaceBuilder as _};
pub use crate::geometry::{FromGeometry as _, IntoGeometry as _};
pub use crate::graph::{ClosedView as _, Rebind as _, Selector};
pub use crate::index::{CollectWithIndexer as _, IndexVertices as _};
pub use crate::primitive::decompose::{
Edges as _, IntoEdges as _, IntoSubdivisions as _, IntoTetrahedrons as _, IntoTrigons as _,
IntoVertices as _, Subdivide as _, Tetrahedrons as _, Triangulate as _, Vertices as _,
};
pub use crate::primitive::generate::Generator as _;
pub use crate::primitive::{
IntoPolygons as _, MapVertices as _, Polygonal as _, Topological as _,
};
pub use crate::DynamicArity as _;
pub use crate::IteratorExt as _;
pub use Selector::ByIndex;
pub use Selector::ByKey;
}
/// Arity of primitives and polygonal meshes.
///
/// The _arity_ of a primitive topological structure (e.g., an edge, trigon,
/// pentagon, etc.) is the number of edges that comprise the structure. For
/// compound structures like polygonal meshes, arity describes the individual
/// polygons that form the structure and may not be representable as a singular
/// value.
///
/// Arity is most generally described as an _open interval_ with a minimum and
/// optional maximum inclusive range. This trait provides a conversion into this
/// general form for all types that represent arity. See the implementations of
/// this trait for more information.
///
/// Types with arity implement the [`StaticArity`] and [`DynamicArity`] traits,
/// which describe their type-level and value-level arity, respectively.
///
/// [`DynamicArity`]: crate::DynamicArity
/// [`StaticArity`]: crate::StaticArity
pub trait Arity: Copy {
fn into_interval(self) -> (usize, Option<usize>);
}
/// Singular arity.
impl Arity for usize {
fn into_interval(self) -> (usize, Option<usize>) {
(self, Some(self))
}
}
/// Closed interval arity.
///
/// This type represents a _closed interval_ arity with a minimum and maximum
/// inclusive range.
impl Arity for (usize, usize) {
fn into_interval(self) -> (usize, Option<usize>) {
let (min, max) = self;
(min, Some(max))
}
}
/// Open interval arity.
///
/// This type represents an _open interval_ arity with a minimum and optional
/// maximum inclusive range. When there is no maximum (`None`), the maximum
/// arity is unspecified. This typically means that there is no theoretical
/// maximum.
impl Arity for (usize, Option<usize>) {
fn into_interval(self) -> (usize, Option<usize>) {
self
}
}
/// Type-level arity.
///
/// This trait specifies the arity that a type supports. Values of a
/// `StaticArity` type have an arity that reflects this constant, which may be
/// any type or form implementing the [`Arity`] trait.
///
/// [`Arity`]: crate::Arity
pub trait StaticArity {
type Static: Arity;
const ARITY: Self::Static;
}
/// Value-level arity.
///
/// This trait specifies the arity of a value at runtime. This is often
/// distinct from the type-level arity of the [`StaticArity`] trait, which
/// expresses the capabilities of a type.
///
/// [`StaticArity`]: crate::StaticArity
pub trait DynamicArity: StaticArity {
type Dynamic: Arity;
fn arity(&self) -> Self::Dynamic;
}
/// Topological types with fixed and singular arity.
///
/// Types are _monomorphic_ if they have a fixed and singular arity as types and
/// values. For example, [`Trigon`] always and only represents a trigon
/// (triangle) with an arity of three. [`Trigon`] values always have an arity of
/// three and types composed of only [`Trigon`]s have a compound arity of three.
///
/// This contrasts _polymorphic_ types like [`BoundedPolygon`], which have an
/// interval arity at the type-level and a singular but varying arity for values
/// (because a [`BoundedPolygon`] value may be either a trigon or tertragon).
///
/// [`BoundedPolygon`]: crate::primitive::BoundedPolygon
/// [`Trigon`]: crate::primitive::Trigon
pub trait Monomorphic: StaticArity<Static = usize> {}
/// Arity of a compound structure.
///
/// `MeshArity` represents the arity of a compound structure, which may be
/// _uniform_ or _non-uniform_. This is typically the value-level arity for
/// mesh data structures like [`MeshGraph`] and [`MeshBuffer`].
///
/// [`MeshBuffer`]: crate::buffer::MeshBuffer
/// [`MeshGraph`]: crate::graph::MeshGraph
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum MeshArity {
/// A compound structure has _uniform_ arity if all of its components have
/// the same arity, such as a [`MeshBuffer`] composed entirely of trigons.
///
/// [`MeshBuffer`]: crate::buffer::MeshBuffer
Uniform(usize),
/// A compound structure has _non-uniform_ arity if the arity of its
/// components differ, such as a [`MeshGraph`] composed of trigons and
/// tetragons.
///
/// Non-uniform arity is represented as an inclusive range known as an
/// _interval_. This is the minimum and maximum arity of the components, in
/// that order.
///
/// [`MeshGraph`]: crate::graph::MeshGraph
NonUniform(usize, usize),
}
impl MeshArity {
pub fn from_components<T, I>(components: I) -> Self
where
T: DynamicArity<Dynamic = usize>,
I: IntoIterator,
I::Item: Borrow<T>,
{
match components
.into_iter()
.map(|component| component.borrow().arity())
.minmax()
{
MinMaxResult::OneElement(exact) => MeshArity::Uniform(exact),
MinMaxResult::MinMax(min, max) => MeshArity::NonUniform(min, max),
_ => MeshArity::Uniform(0),
}
}
}
impl Arity for MeshArity {
fn into_interval(self) -> (usize, Option<usize>) {
match self {
MeshArity::Uniform(exact) => (exact, Some(exact)),
MeshArity::NonUniform(min, max) => (min, Some(max)),
}
}
}
pub trait TryFromIterator<T>: Sized {
type Error;
fn try_from_iter<I>(items: I) -> Result<Self, Self::Error>
where
I: Iterator<Item = T>;
}
impl<T, const N: usize> TryFromIterator<T> for [T; N] {
type Error = ();
fn try_from_iter<I>(items: I) -> Result<Self, Self::Error>
where
I: Iterator<Item = T>,
{
items
.has_exactly(N)
.and_then(|items| items.collect::<ArrayVec<T, N>>().into_inner().ok())
.ok_or(())
}
}
macro_rules! count {
($x:tt $($xs:tt)*) => (1usize + count!($($xs)*));
() => (0usize);
}
macro_rules! substitute {
($_t:tt, $with:ty) => {
$with
};
}
macro_rules! impl_try_from_iterator {
(tuples => ($($i:ident),+)) => (
#[allow(non_snake_case)]
impl<T> TryFromIterator<T> for ($(substitute!(($i), T),)+) {
type Error = ();
fn try_from_iter<I>(items: I) -> Result<Self, Self::Error>
where
I: Iterator<Item = T>,
{
use $crate::IteratorExt as _;
items
.has_exactly(count!($($i)*))
.map(|mut items| {
$(let $i = items.next().unwrap();)*
($($i,)*)
})
.ok_or(())
}
}
);
}
impl_try_from_iterator!(tuples => (A, B));
impl_try_from_iterator!(tuples => (A, B, C));
impl_try_from_iterator!(tuples => (A, B, C, D));
impl_try_from_iterator!(tuples => (A, B, C, D, E));
impl_try_from_iterator!(tuples => (A, B, C, D, E, F));
/// Extension methods for types implementing [`Iterator`].
///
/// [`Iterator`]: std::iter::Iterator
pub trait IteratorExt: Iterator + Sized {
/// Provides an iterator over a window of duplets that includes the first
/// item in the sequence at both the beginning and end of the iteration.
///
/// Given a collection of ordered items $(a,b,c)$, this iterator yeilds the
/// ordered items $((a,b),(b,c),(c,a))$.
fn perimeter(self) -> Perimeter<Self>
where
Self::Item: Clone,
{
Perimeter::new(self)
}
/// Maps an iterator over [`graph`] views to the keys of those views.
///
/// It is often useful to examine or collect the keys of views over a
/// [`MeshGraph`]. This iterator avoids redundant use of
/// [`map`][`Iterator::map`] to extract keys.
///
/// # Examples
///
/// Collecting keys of faces before a topological mutation in a
/// [`MeshGraph`]:
///
/// ```rust
/// # extern crate decorum;
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use decorum::R64;
/// use nalgebra::Point3;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
/// use plexus::primitive::generate::Position;
/// use plexus::primitive::sphere::UvSphere;
///
/// type E3 = Point3<R64>;
///
/// let mut graph = UvSphere::new(6, 6)
/// .polygons::<Position<E3>>()
/// .collect::<MeshGraph<E3>>();
///
/// let keys = graph
/// .faces()
/// .filter(|face| face.arity() > 3)
/// .keys()
/// .collect::<Vec<_>>();
/// for key in keys {
/// graph.face_mut(key).unwrap().poke_with_offset(0.5);
/// }
/// ```
///
/// [`Iterator::map`]: std::iter::Iterator::map
/// [`MeshGraph`]: crate::graph::MeshGraph
/// [`graph`]: crate::graph
fn keys(self) -> Keys<Self>
where
Self::Item: ClosedView,
{
Keys::new(self)
}
/// Determines if an iterator provides `n` or more items.
///
/// Returns a peekable iterator if the source iterator provides at least `n`
/// items, otherwise `None`.
///
/// # Examples
///
/// Ensuring that an iterator over vertices has an arity of at least three:
///
/// ```rust
/// use plexus::IteratorExt;
///
/// fn is_convex(vertices: impl Iterator<Item = [f64; 2]>) -> bool {
/// vertices
/// .has_at_least(3)
/// .and_then(|vertices| {
/// for vertex in vertices {
/// // ...
/// }
/// // ...
/// # Some(0usize)
/// })
/// .is_some()
/// }
/// ```
fn has_at_least(self, n: usize) -> Option<MultiPeek<Self>> {
peek_n(self, n).map(|mut peekable| {
peekable.reset_peek();
peekable
})
}
fn has_exactly(self, n: usize) -> Option<MultiPeek<Self>> {
peek_n(self, n).and_then(|mut peekable| {
peekable.peek().is_none().then(|| {
peekable.reset_peek();
peekable
})
})
}
fn try_collect<T>(self) -> Result<T, T::Error>
where
T: TryFromIterator<Self::Item>,
{
T::try_from_iter(self)
}
}
impl<I> IteratorExt for I where I: Iterator {}
/// Iterator that produces a window of duplets over its input.
///
/// The duplets produced include the first item in the input at both the
/// beginning and end of the iteration, forming a perimeter. Given a collection
/// of ordered items $(a,b,c)$, this iterator yields the ordered items
/// $((a,b),(b,c),(c,a))$.
///
/// See [`IteratorExt::perimeter`].
///
/// [`IteratorExt::perimeter`]: crate::IteratorExt::perimeter
#[derive(Clone)]
pub struct Perimeter<I>
where
I: Iterator,
I::Item: Clone,
{
input: I,
first: Option<I::Item>,
previous: Option<I::Item>,
}
impl<I> Perimeter<I>
where
I: Iterator,
I::Item: Clone,
{
fn new(mut input: I) -> Self {
let first = input.next();
let previous = first.clone();
Perimeter {
input,
first,
previous,
}
}
}
impl<I> Iterator for Perimeter<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = (I::Item, I::Item);
fn next(&mut self) -> Option<Self::Item> {
let next = self.input.next();
self.previous
.clone()
.zip(next.or_else(|| self.first.take()))
.map(|(a, b)| {
self.previous = Some(b.clone());
(a, b)
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.input.size_hint()
}
}
/// Iterator that maps [`graph`] views to their keys.
///
/// See [`IteratorExt::keys`].
///
/// [`graph`]: crate::graph
/// [`IteratorExt::keys`]: crate::IteratorExt::keys
#[derive(Clone)]
pub struct Keys<I>
where
I: Iterator,
I::Item: ClosedView,
{
input: I,
}
impl<I> Keys<I>
where
I: Iterator,
I::Item: ClosedView,
{
fn new(input: I) -> Self {
Keys { input }
}
}
impl<I> Iterator for Keys<I>
where
I: Iterator,
I::Item: ClosedView,
{
type Item = <I::Item as ClosedView>::Key;
fn next(&mut self) -> Option<Self::Item> {
self.input.next().map(|view| view.key())
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.input.size_hint()
}
}
fn peek_n<I>(input: I, n: usize) -> Option<MultiPeek<I>>
where
I: Iterator,
{
let mut peekable = itertools::multipeek(input);
for _ in 0..n {
peekable.peek()?;
}
Some(peekable)
}
/// Computes the arity of a polygon with `n` vertices.
///
/// For `n` greater than two, these values are the same and well-formed. For `n`
/// less than three, the polygon is degenerate (a digon, monogon, or zerogon),
/// all of which are assigned an arity of one. Note that some topological types
/// do not allow `n` being one nor zero.
const fn n_arity(n: usize) -> usize {
if n < 3 {
1
}
else {
n
}
}