1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
//! Half-edge graph representation of polygonal meshes.
//!
//! This module provides a flexible representation of polygonal meshes as a
//! [half-edge graph][dcel]. Plexus refers to _Half-edges_ and _edges_ as _arcs_
//! and _edges_, respectively. Graphs can store arbitrary data associated with
//! any topological entity (vertices, arcs, edges, and faces).
//!
//! Graph APIs support geometric operations if vertex data implements the
//! [`AsPosition`] trait.
//!
//! See the [user guide][guide-graphs] for more details and examples.
//!
//! # Representation
//!
//! A [`MeshGraph`] is fundamentally composed of four entities: _vertices_,
//! _arcs_, _edges_, and _faces_. The figure below summarizes the connectivity
//! of these entities.
//!
//! ![Half-Edge Graph Figure](https://plexus.rs/img/heg.svg)
//!
//! Arcs are directed and connect vertices. An arc that is directed toward a
//! vertex $A$ is an _incoming arc_ with respect to $A$. Similarly, an arc
//! directed away from such a vertex is an _outgoing arc_. Every vertex is
//! associated with exactly one _leading arc_, which is always an outgoing arc.
//! The vertex toward which an arc is directed is the arc's _destination vertex_
//! and the other is its _source vertex_.
//!
//! Every arc is paired with an _opposite arc_ with an opposing direction.
//! Given an arc from a vertex $A$ to a vertex $B$, that arc will have an
//! opposite arc from $B$ to $A$. Such arcs are notated $\overrightarrow{AB}$
//! and $\overrightarrow{BA}$. Together, these arcs form an _edge_, which is not
//! directed. An edge and its two arcs are together called a _composite edge_.
//!
//! Arcs are connected to their adjacent arcs, known as _next_ and _previous
//! arcs_. A traversal along a series of arcs is a _path_. The path formed by
//! traversing from an arc to its next arc and so on is a _ring_. When a face is
//! present within an ring, the arcs will refer to that face and the face will
//! refer to exactly one of the arcs in the ring (this is the leading arc of the
//! face). An arc with no associated face is known as a _boundary arc_. If
//! either of an edge's arcs is a boundary arc, then that edge is a _boundary
//! edge_.
//!
//! A path that terminates is _open_ and a path that forms a loop is _closed_.
//! Rings are always closed. Paths may be notated using _sequence_ or _set
//! notation_ and both forms are used to describe rings and faces.
//!
//! Sequence notation is formed from the ordered sequence of vertices that a
//! path traverses, including the source vertex of the first arc and the
//! destination vertex of the last arc. Set notation is similar, but is
//! implicitly closed and only includes the ordered and unique set of vertices
//! traversed by the path. An open path over vertices $A$, $B$, and $C$ is
//! notated as a sequence $\overrightarrow{(A,B,C)}$. A closed path over
//! vertices $A$, $B$, and $C$ includes the arc $\overrightarrow{CA}$ and is
//! notated as a sequence $\overrightarrow{(A,B,C,A)}$ or a set
//! $\overrightarrow{\\{A,B,C\\}}$.
//!
//! Together with vertices and faces, the connectivity of arcs allows for
//! effecient traversals. For example, it becomes trivial to find adjacent
//! entities, such as the faces that share a given vertex or the adjacent faces
//! of a given face.
//!
//! [`MeshGraph`]s store entities using associative data structures with
//! strongly typed and opaque keys. These keys are used to refer entities in a
//! graph. Note that paths and rings are **not** entities and are not explicitly
//! stored in graphs.
//!
//! # Views
//!
//! [`MeshGraph`]s expose _views_ over their entities (vertices, arcs, edges,
//! and faces). Views are a type of _smart pointer_ and bind entity storage with
//! a key for a specific entity. They extend entities with rich behaviors and
//! expose their associated data via `get` and `get_mut` functions.
//!
//! Views provide the primary API for interacting with a [`MeshGraph`]'s
//! topology and data. There are three types of views summarized below:
//!
//! | Type | Traversal | Exclusive | Data | Topology |
//! |-----------|-----------|-----------|-----------|-----------|
//! | Immutable | Yes | No | Immutable | Immutable |
//! | Mutable | Yes | Yes | Mutable | Mutable |
//! | Orphan | No | No | Mutable | N/A |
//!
//! _Immutable_ and _mutable views_ behave similarly to Rust's `&` and `&mut`
//! references: immutable views cannot mutate a graph and are not exclusive
//! while mutable views may mutate both the data and topology of a graph but are
//! exclusive.
//!
//! _Orphan views_ (simply referred to as _orphans_ in APIs) may mutate the data
//! of a graph, but they cannot access the topology of a graph and cannot
//! traverse a graph in any way. This is only useful for modifying the data in a
//! graph, but unlike mutable views, orphan views are not exclusive.
//!
//! Views perform _interior reborrows_, which reborrow the reference to storage
//! to construct other views. Immutable reborrows can be performed explicitly
//! using the conversions described below:
//!
//! | Function | Receiver | Borrow | Output |
//! |------------|-------------|--------|-----------|
//! | `to_ref` | `&self` | `&_` | Immutable |
//! | `into_ref` | `self` | `&*_` | Immutable |
//!
//! It is not possible to explicitly perform a mutable interior reborrow. Such a
//! reborrow could invalidate the source view by performing a topological
//! mutation. Mutable reborrows are performed beneath safe APIs, such as those
//! exposing iterators over orphan views.
//!
//! # Geometric Traits
//!
//! The [`GraphData`] trait is used to specify the types of data stored in
//! entities in a [`MeshGraph`]. If the `Vertex` data implements the
//! [`AsPosition`] trait and the positional data implements the appropriate
//! geometric traits, then geometric APIs like
//! [`split_at_midpoint`][`ArcView::split_at_midpoint`] and
//! [`poke_with_offset`][`FaceView::poke_with_offset`] can be used. Abstracting
//! this in generic code involves various traits from [`theon`].
//!
//! This module provides geometric traits that describe supported geometric
//! operations without the need to express complicated relationships between
//! types representing a [Euclidean space][`EuclideanSpace`]. These traits
//! express the geometric capabilites of [`GraphData`]. For example, the
//! following generic function requires [`EdgeMidpoint`] and subdivides faces in
//! a graph by splitting edges at their midpoints:
//!
//! ```rust
//! # extern crate plexus;
//! # extern crate smallvec;
//! #
//! use plexus::geometry::AsPositionMut;
//! use plexus::graph::{EdgeMidpoint, FaceView, GraphData, MeshGraph};
//! use plexus::prelude::*;
//! use smallvec::SmallVec;
//!
//! // Requires `EdgeMidpoint` for `split_at_midpoint`.
//! pub fn ambo<G>(face: FaceView<&mut MeshGraph<G>>) -> FaceView<&mut MeshGraph<G>>
//! where
//! G: EdgeMidpoint + GraphData,
//! G::Vertex: AsPositionMut,
//! {
//! let arity = face.arity();
//! let mut arc = face.into_arc();
//! let mut splits = SmallVec::<[_; 4]>::with_capacity(arity);
//! for _ in 0..arity {
//! let vertex = arc.split_at_midpoint();
//! splits.push(vertex.key());
//! arc = vertex.into_outgoing_arc().into_next_arc();
//! }
//! let mut face = arc.into_face().unwrap();
//! for (a, b) in splits.into_iter().perimeter() {
//! face = face.split(a, b).unwrap().into_face().unwrap();
//! }
//! face
//! }
//! ```
//!
//! # Examples
//!
//! Generating a [`MeshGraph`] from a [$uv$-sphere][`UvSphere`]:
//!
//! ```rust
//! # extern crate decorum;
//! # extern crate nalgebra;
//! # extern crate plexus;
//! #
//! use decorum::R64;
//! use nalgebra::Point3;
//! use plexus::graph::MeshGraph;
//! use plexus::prelude::*;
//! use plexus::primitive::generate::Position;
//! use plexus::primitive::sphere::UvSphere;
//!
//! type E3 = Point3<R64>;
//!
//! let mut graph: MeshGraph<E3> = UvSphere::default().polygons::<Position<E3>>().collect();
//! ```
//!
//! Extruding a face in a [`MeshGraph`]:
//!
//! ```rust
//! # extern crate decorum;
//! # extern crate nalgebra;
//! # extern crate plexus;
//! #
//! use decorum::R64;
//! use nalgebra::Point3;
//! use plexus::graph::MeshGraph;
//! use plexus::prelude::*;
//! use plexus::primitive::generate::Position;
//! use plexus::primitive::sphere::UvSphere;
//!
//! type E3 = Point3<R64>;
//!
//! let mut graph: MeshGraph<E3> = UvSphere::new(8, 8).polygons::<Position<E3>>().collect();
//! // Get the key of the first face and then extrude it.
//! let key = graph.faces().nth(0).unwrap().key();
//! let face = graph
//! .face_mut(key)
//! .unwrap()
//! .extrude_with_offset(1.0)
//! .unwrap();
//! ```
//!
//! Traversing and circulating over a [`MeshGraph`]:
//!
//! ```rust
//! # extern crate nalgebra;
//! # extern crate plexus;
//! #
//! use nalgebra::Point2;
//! use plexus::graph::MeshGraph;
//! use plexus::prelude::*;
//! use plexus::primitive::Tetragon;
//!
//! let mut graph = MeshGraph::<Point2<f64>>::from_raw_buffers(
//! vec![Tetragon::new(0u32, 1, 2, 3)],
//! vec![(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)],
//! )
//! .unwrap();
//! graph.triangulate();
//!
//! // Traverse an arc and use a circulator to get the faces of a nearby vertex.
//! let key = graph.arcs().nth(0).unwrap().key();
//! let mut vertex = graph
//! .arc_mut(key)
//! .unwrap()
//! .into_opposite_arc()
//! .into_next_arc()
//! .into_destination_vertex();
//! for mut face in vertex.adjacent_face_orphans() {
//! // `face.get_mut()` provides a mutable reference to face data.
//! }
//! ```
//!
//! [dcel]: https://en.wikipedia.org/wiki/doubly_connected_edge_list
//! [guide-graphs]: https://plexus.rs/user-guide/graphs
//!
//! [`theon`]: https://crates.io/crates/theon
//!
//! [`Deref`]: std::ops::Deref
//! [`EuclideanSpace`]: theon::space::EuclideanSpace
//! [`AsPosition`]: crate::geometry::AsPosition
//! [`ArcView::split_at_midpoint`]: crate::graph::ArcView::split_at_midpoint
//! [`EdgeMidpoint`]: crate::graph::EdgeMidpoint
//! [`FaceView::poke_with_offset`]: crate::graph::FaceView::poke_with_offset
//! [`GraphData`]: crate::graph::GraphData
//! [`MeshGraph`]: crate::graph::MeshGraph
//! [`UvSphere`]: crate::primitive::sphere::UvSphere
mod builder;
mod core;
mod data;
mod edge;
mod face;
mod geometry;
mod mutation;
mod path;
mod vertex;
use decorum::cmp::IntrinsicOrd;
use decorum::R64;
use num::{Integer, NumCast, ToPrimitive, Unsigned};
use smallvec::SmallVec;
use std::borrow::Borrow;
use std::collections::{HashMap, HashSet};
use std::convert::TryFrom;
use std::fmt::Debug;
use std::hash::Hash;
use std::iter::FromIterator;
use std::vec;
use theon::adjunct::Map;
use theon::query::Aabb;
use theon::space::{EuclideanSpace, Scalar};
use theon::{AsPosition, AsPositionMut};
use thiserror::Error;
use typenum::NonZero;
use crate::buffer::{BufferError, FromRawBuffers, FromRawBuffersWithArity, MeshBuffer};
use crate::builder::{Buildable, FacetBuilder, MeshBuilder, SurfaceBuilder};
use crate::constant::{Constant, ToType, TypeOf};
use crate::encoding::{FaceDecoder, FromEncoding, VertexDecoder};
use crate::entity::storage::prelude::*;
use crate::entity::storage::{AsStorage, AsStorageMut, AsStorageOf, Key, StorageTarget};
use crate::entity::view::{Bind, Orphan, View};
use crate::entity::EntityError;
use crate::geometry::{FromGeometry, IntoGeometry};
use crate::graph::builder::GraphBuilder;
use crate::graph::core::{Core, OwnedCore};
use crate::graph::data::Parametric;
use crate::graph::edge::{Arc, Edge};
use crate::graph::face::Face;
use crate::graph::mutation::face::FaceInsertCache;
use crate::graph::mutation::{Consistent, Immediate};
use crate::graph::vertex::Vertex;
use crate::index::{Flat, FromIndexer, Grouping, HashIndexer, IndexBuffer, IndexVertices, Indexer};
use crate::primitive::decompose::IntoVertices;
use crate::primitive::{IntoPolygons, Polygonal, UnboundedPolygon};
use crate::transact::Transact;
use crate::{DynamicArity, MeshArity, StaticArity};
pub use crate::entity::view::{ClosedView, Rebind};
pub use crate::graph::data::GraphData;
pub use crate::graph::edge::{ArcKey, ArcOrphan, ArcView, EdgeKey, EdgeOrphan, EdgeView, ToArc};
pub use crate::graph::face::{FaceKey, FaceOrphan, FaceView, Ring, ToRing};
pub use crate::graph::geometry::{
ArcNormal, EdgeMidpoint, FaceCentroid, FaceNormal, FacePlane, VertexCentroid, VertexNormal,
VertexPosition,
};
pub use crate::graph::path::Path;
pub use crate::graph::vertex::{VertexKey, VertexOrphan, VertexView};
pub use Selector::ByIndex;
pub use Selector::ByKey;
type Mutation<M> = mutation::Mutation<Immediate<M>>;
/// Errors concerning [`MeshGraph`]s.
///
/// [`MeshGraph`]: crate::graph::MeshGraph
#[derive(Debug, Error, PartialEq)]
pub enum GraphError {
#[error("required topology not found")]
TopologyNotFound,
#[error("conflicting topology found")]
TopologyConflict,
#[error("topology malformed")]
TopologyMalformed,
#[error("topology unreachable")]
TopologyUnreachable,
#[error("arity is non-polygonal")]
ArityNonPolygonal,
/// The arity of a [`MeshGraph`] or other data structure is not compatible
/// with an operation.
#[error("conflicting arity; expected {expected}, but got {actual}")]
ArityConflict {
/// The expected arity.
expected: usize,
/// The incompatible arity that was encountered.
actual: usize,
},
/// The compound arity of a [`MeshGraph`] or other data structure is not
/// uniform.
///
/// This error occurs when an operation requires a uniform arity but a graph
/// or other data structure is non-uniform. See [`MeshArity`].
///
/// [`MeshArity`]: crate::MeshArity
#[error("arity is non-uniform")]
ArityNonUniform,
/// Geometry is incompatible or cannot be computed.
#[error("geometric operation failed")]
Geometry,
/// A graph or other data structure is not compatible with an encoding.
#[error("encoding operation failed")]
EncodingIncompatible,
}
// TODO: How should buffer errors be handled? Is this sufficient?
impl From<BufferError> for GraphError {
fn from(error: BufferError) -> Self {
match error {
BufferError::ArityConflict { expected, actual } => {
GraphError::ArityConflict { expected, actual }
}
_ => GraphError::EncodingIncompatible,
}
}
}
impl From<EntityError> for GraphError {
fn from(error: EntityError) -> Self {
match error {
EntityError::EntityNotFound => GraphError::TopologyNotFound,
EntityError::Data => GraphError::Geometry,
}
}
}
trait OptionExt<T> {
fn expect_consistent(self) -> T;
}
impl<T> OptionExt<T> for Option<T> {
fn expect_consistent(self) -> T {
self.expect("internal error: graph consistency violated")
}
}
trait ResultExt<T, E> {
fn expect_consistent(self) -> T
where
E: Debug;
}
impl<T, E> ResultExt<T, E> for Result<T, E> {
fn expect_consistent(self) -> T
where
E: Debug,
{
self.expect("internal error: graph consistency violated")
}
}
/// Entity selector.
///
/// Identifies an entity by key or index. Keys behave as an absolute selector
/// and uniquely identify a single entity within a [`MeshGraph`]. Indices behave
/// as a relative selector and identify an entity relative to some other entity.
/// `Selector` is used by operations that support both of these selection
/// mechanisms.
///
/// An index is typically used to select an adjacent entity or contained (and
/// ordered) entity, such as an adjacent face.
///
/// # Examples
///
/// Splitting a face by index (of its contained vertices):
///
/// ```rust
/// # extern crate decorum;
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use decorum::R64;
/// use nalgebra::Point3;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
/// use plexus::primitive::cube::Cube;
/// use plexus::primitive::generate::Position;
///
/// type E3 = Point3<R64>;
///
/// let mut graph: MeshGraph<E3> = Cube::new().polygons::<Position<E3>>().collect();
/// let key = graph.faces().nth(0).unwrap().key();
/// graph
/// .face_mut(key)
/// .unwrap()
/// .split(ByIndex(0), ByIndex(2))
/// .unwrap();
/// ```
///
/// [`MeshGraph`]: crate::graph::MeshGraph
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Selector<K> {
ByKey(K),
ByIndex(usize),
}
impl<K> Selector<K> {
/// Gets the selector's key or passes its index to a function to resolve
/// the key.
pub fn key_or_else<E, F>(self, f: F) -> Result<K, GraphError>
where
E: Into<GraphError>,
F: Fn(usize) -> Result<K, E>,
{
match self {
Selector::ByKey(key) => Ok(key),
Selector::ByIndex(index) => f(index).map_err(|error| error.into()),
}
}
/// Gets the selector's index or passes its key to a function to resolve
/// the index.
pub fn index_or_else<E, F>(self, f: F) -> Result<usize, GraphError>
where
E: Into<GraphError>,
F: Fn(K) -> Result<usize, E>,
{
match self {
Selector::ByKey(key) => f(key).map_err(|error| error.into()),
Selector::ByIndex(index) => Ok(index),
}
}
}
impl<K> From<K> for Selector<K>
where
K: Key,
{
fn from(key: K) -> Self {
Selector::ByKey(key)
}
}
impl<K> From<usize> for Selector<K> {
fn from(index: usize) -> Self {
Selector::ByIndex(index)
}
}
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub enum GraphKey {
Vertex(VertexKey),
Arc(ArcKey),
Edge(EdgeKey),
Face(FaceKey),
}
impl From<VertexKey> for GraphKey {
fn from(key: VertexKey) -> Self {
GraphKey::Vertex(key)
}
}
impl From<ArcKey> for GraphKey {
fn from(key: ArcKey) -> Self {
GraphKey::Arc(key)
}
}
impl From<EdgeKey> for GraphKey {
fn from(key: EdgeKey) -> Self {
GraphKey::Edge(key)
}
}
impl From<FaceKey> for GraphKey {
fn from(key: FaceKey) -> Self {
GraphKey::Face(key)
}
}
/// [Half-edge graph][dcel] representation of a polygonal mesh.
///
/// `MeshGraph`s form a polygonal mesh from four interconnected entities:
/// vertices, arcs, edges, and faces. These entities are exposed by view and
/// orphan types as well as types that represent rings and paths in a graph.
/// Entities can be associated with arbitrary data, including no data at all.
/// See the [`GraphData`] trait.
///
/// This flexible representation supports fast traversals and searches and can
/// be used to manipulate both the data and topology of a mesh.
///
/// See the [`graph`] module documentation and [user guide][guide-graphs] for
/// more details.
///
/// [dcel]: https://en.wikipedia.org/wiki/doubly_connected_edge_list
/// [guide-graphs]: https://plexus.rs/user-guide/graphs
///
/// [`GraphData`]: crate::graph::GraphData
/// [`graph`]: crate::graph
pub struct MeshGraph<G = (R64, R64, R64)>
where
G: GraphData,
{
core: OwnedCore<G>,
}
impl<G> MeshGraph<G>
where
G: GraphData,
{
/// Creates an empty `MeshGraph`.
///
/// # Examples
///
/// ```rust
/// use plexus::graph::MeshGraph;
///
/// let mut graph = MeshGraph::<()>::new();
/// ```
pub fn new() -> Self {
MeshGraph::from(Core::default())
}
/// Gets the number of vertices in the graph.
pub fn vertex_count(&self) -> usize {
self.core.vertices.len()
}
/// Gets an immutable view of the vertex with the given key.
pub fn vertex(&self, key: VertexKey) -> Option<VertexView<&Self>> {
Bind::bind(self, key)
}
/// Gets a mutable view of the vertex with the given key.
pub fn vertex_mut(&mut self, key: VertexKey) -> Option<VertexView<&mut Self>> {
Bind::bind(self, key)
}
// TODO: Return `Clone + Iterator`.
/// Gets an iterator of immutable views over the vertices in the graph.
pub fn vertices(&self) -> impl Iterator<Item = VertexView<&Self>> {
self.core
.vertices
.iter()
.map(|(key, _)| key)
.map(move |key| View::bind_unchecked(self, key))
.map(From::from)
}
/// Gets an iterator of orphan views over the vertices in the graph.
pub fn vertex_orphans(&mut self) -> impl Iterator<Item = VertexOrphan<G>> {
self.core
.vertices
.iter_mut()
.map(|(key, data)| Orphan::bind_unchecked(data, key))
.map(From::from)
}
/// Gets the number of arcs in the graph.
pub fn arc_count(&self) -> usize {
self.core.arcs.len()
}
/// Gets an immutable view of the arc with the given key.
pub fn arc(&self, key: ArcKey) -> Option<ArcView<&Self>> {
Bind::bind(self, key)
}
/// Gets a mutable view of the arc with the given key.
pub fn arc_mut(&mut self, key: ArcKey) -> Option<ArcView<&mut Self>> {
Bind::bind(self, key)
}
// TODO: Return `Clone + Iterator`.
/// Gets an iterator of immutable views over the arcs in the graph.
pub fn arcs(&self) -> impl Iterator<Item = ArcView<&Self>> {
self.core
.arcs
.iter()
.map(|(key, _)| key)
.map(move |key| View::bind_unchecked(self, key))
.map(From::from)
}
/// Gets an iterator of orphan views over the arcs in the graph.
pub fn arc_orphans(&mut self) -> impl Iterator<Item = ArcOrphan<G>> {
self.core
.arcs
.iter_mut()
.map(|(key, data)| Orphan::bind_unchecked(data, key))
.map(From::from)
}
/// Gets the number of edges in the graph.
pub fn edge_count(&self) -> usize {
self.core.edges.len()
}
/// Gets an immutable view of the edge with the given key.
pub fn edge(&self, key: EdgeKey) -> Option<EdgeView<&Self>> {
Bind::bind(self, key)
}
/// Gets a mutable view of the edge with the given key.
pub fn edge_mut(&mut self, key: EdgeKey) -> Option<EdgeView<&mut Self>> {
Bind::bind(self, key)
}
// TODO: Return `Clone + Iterator`.
/// Gets an iterator of immutable views over the edges in the graph.
pub fn edges(&self) -> impl Iterator<Item = EdgeView<&Self>> {
self.core
.edges
.iter()
.map(|(key, _)| key)
.map(move |key| View::bind_unchecked(self, key))
.map(From::from)
}
/// Gets an iterator of orphan views over the edges in the graph.
pub fn edge_orphans(&mut self) -> impl Iterator<Item = EdgeOrphan<G>> {
self.core
.edges
.iter_mut()
.map(|(key, data)| Orphan::bind_unchecked(data, key))
.map(From::from)
}
/// Gets the number of faces in the graph.
pub fn face_count(&self) -> usize {
self.core.faces.len()
}
/// Gets an immutable view of the face with the given key.
pub fn face(&self, key: FaceKey) -> Option<FaceView<&Self>> {
Bind::bind(self, key)
}
/// Gets a mutable view of the face with the given key.
pub fn face_mut(&mut self, key: FaceKey) -> Option<FaceView<&mut Self>> {
Bind::bind(self, key)
}
// TODO: Return `Clone + Iterator`.
/// Gets an iterator of immutable views over the faces in the graph.
pub fn faces(&self) -> impl Iterator<Item = FaceView<&Self>> {
self.core
.faces
.iter()
.map(|(key, _)| key)
.map(move |key| View::bind_unchecked(self, key))
.map(From::from)
}
/// Gets an iterator of orphan views over the faces in the graph.
pub fn face_orphans(&mut self) -> impl Iterator<Item = FaceOrphan<G>> {
self.core
.faces
.iter_mut()
.map(|(key, data)| Orphan::bind_unchecked(data, key))
.map(From::from)
}
/// Gets an immutable path over the given sequence of vertex keys.
///
/// # Errors
///
/// Returns an error if a vertex is not found or the path is malformed.
pub fn path<I>(&self, keys: I) -> Result<Path<'static, &Self>, GraphError>
where
I: IntoIterator,
I::Item: Borrow<VertexKey>,
{
Path::bind(self, keys)
}
/// Gets a mutable path over the given sequence of vertex keys.
///
/// # Errors
///
/// Returns an error if a vertex is not found or the path is malformed.
pub fn path_mut<I>(&mut self, keys: I) -> Result<Path<'static, &mut Self>, GraphError>
where
I: IntoIterator,
I::Item: Borrow<VertexKey>,
{
Path::bind(self, keys)
}
/// Gets an axis-aligned bounding box that encloses the graph.
pub fn aabb(&self) -> Aabb<VertexPosition<G>>
where
G::Vertex: AsPosition,
VertexPosition<G>: EuclideanSpace,
Scalar<VertexPosition<G>>: IntrinsicOrd,
{
Aabb::from_points(self.vertices().map(|vertex| *vertex.position()))
}
// TODO: This triangulation does not consider geometry and exhibits some
// bad behavior in certain situations. Triangulation needs to be
// reworked and may need to expose a bit more complexity. A geometric
// triangulation algorithm would be a useful addition and could
// detect concave faces and provide more optimal splits. See comments
// on `FaceView::triangulate`.
/// Triangulates the graph, tessellating all faces into triangles.
pub fn triangulate(&mut self) {
// TODO: This implementation is a bit fragile and depends on the
// semantics of `TopologyConflict` in this context. It also panics
// if no valid split is found given all offsets or if some other
// error is encountered while splitting. Can this code assume that
// any of these conditions aren't possible? This should work a bit
// better than using `FaceView::triangulate` until triangulation
// is reworked.
let keys = self
.core
.faces
.iter()
.map(|(key, _)| key)
.collect::<Vec<_>>();
for key in keys {
let mut face = self.face_mut(key).unwrap();
let mut offset = 0;
while face.arity() > 3 {
match face.split(ByIndex(offset), ByIndex(offset + 2)) {
Ok(next) => {
face = next.into_face().expect_consistent();
offset = 0;
}
Err(GraphError::TopologyConflict) => {
// Retry if the split intersected another face. See
// `FaceSplitCache::from_face`.
face = self.face_mut(key).unwrap();
offset += 1;
if offset >= face.arity() {
panic!()
}
}
_ => panic!(),
}
}
}
}
/// Smooths the positions of vertices in the graph.
///
/// Each position is translated by its offset from its centroid scaled by
/// the given factor. The centroid of a vertex position is the mean of the
/// positions of its adjacent vertices. That is, given a factor $k$ and a
/// vertex with position $P$ and centroid $Q$, its position becomes
/// $P+k(Q-P)$.
pub fn smooth<T>(&mut self, factor: T)
where
T: Into<Scalar<VertexPosition<G>>>,
G: VertexCentroid,
G::Vertex: AsPositionMut,
VertexPosition<G>: EuclideanSpace,
{
let factor = factor.into();
let mut positions = HashMap::with_capacity(self.vertex_count());
for vertex in self.vertices() {
let position = *vertex.position();
positions.insert(
vertex.key(),
position + ((vertex.centroid() - position) * factor),
);
}
for mut vertex in self.vertex_orphans() {
*vertex.get_mut().as_position_mut() = positions.remove(&vertex.key()).unwrap();
}
}
/// Splits the graph along a path.
///
/// Splitting a graph creates boundaries along the given path and copies any
/// necessary vertex, arc, and edge data.
///
/// If the path bisects the graph, then splitting will result in disjointed
/// sub-graphs.
///
/// # Examples
///
/// ```rust,no_run
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use nalgebra::Point2;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
/// use plexus::primitive::Trigon;
///
/// type E2 = Point2<f64>;
///
/// // Create a graph from two triangles.
/// let mut graph = MeshGraph::<E2>::from_raw_buffers(
/// vec![Trigon::new(0usize, 1, 2), Trigon::new(2, 1, 3)],
/// vec![(-1.0, 0.0), (0.0, -1.0), (0.0, 1.0), (1.0, 0.0)],
/// )
/// .unwrap();
///
/// // Find the shared edge that bisects the triangles and then construct a path
/// // along the edge and split the graph.
/// let key = graph
/// .edges()
/// .find(|edge| !edge.is_boundary_edge())
/// .map(|edge| edge.into_arc().key())
/// .unwrap();
/// let mut path = graph.arc_mut(key).unwrap().into_path();
/// MeshGraph::split_at_path(path).unwrap();
/// ```
pub fn split_at_path(path: Path<&mut Self>) -> Result<(), GraphError> {
let _ = path;
unimplemented!()
}
/// Gets an iterator over a vertex within each disjoint sub-graph.
///
/// Traverses the graph and returns an arbitrary vertex within each
/// _disjoint sub-graph_. A sub-graph is _disjoint_ if it cannot be reached
/// from all other topology in the graph.
///
/// # Examples
///
/// ```rust
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use nalgebra::Point2;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
/// use plexus::primitive::Trigon;
///
/// type E2 = Point2<f64>;
///
/// // Create a graph from two disjoint triangles.
/// let graph = MeshGraph::<E2>::from_raw_buffers(
/// vec![Trigon::new(0u32, 1, 2), Trigon::new(3, 4, 5)],
/// vec![
/// (-2.0, 0.0),
/// (-1.0, 0.0),
/// (-1.0, 1.0),
/// (1.0, 0.0),
/// (2.0, 0.0),
/// (1.0, 1.0),
/// ],
/// )
/// .unwrap();
///
/// // A vertex from each disjoint triangle is returned.
/// for vertex in graph.disjoint_subgraph_vertices() {
/// // ...
/// }
/// ```
pub fn disjoint_subgraph_vertices(&self) -> impl ExactSizeIterator<Item = VertexView<&Self>> {
let keys = self
.core
.vertices
.iter()
.map(|(key, _)| key)
.collect::<HashSet<_>>();
let mut subkeys = HashSet::with_capacity(self.vertex_count());
let mut vertices = SmallVec::<[VertexView<_>; 4]>::new();
while let Some(key) = keys.difference(&subkeys).nth(0) {
let vertex = VertexView::from(View::bind_unchecked(self, *key));
vertices.push(vertex);
subkeys.extend(vertex.traverse_by_depth().map(|vertex| vertex.key()));
}
vertices.into_iter()
}
/// Moves disjoint sub-graphs into separate graphs.
pub fn into_disjoint_subgraphs(self) -> Vec<Self> {
unimplemented!()
}
/// Shrinks the capacity of the graph's underlying storage as much as
/// possible.
pub fn shrink_to_fit(&mut self) {
self.core.vertices.shrink_to_fit();
self.core.arcs.shrink_to_fit();
self.core.edges.shrink_to_fit();
self.core.faces.shrink_to_fit();
}
/// Creates a [`Buildable`] mesh data structure from the graph.
///
/// The output is created from each unique vertex in the graph. No face data
/// is used, and the `Facet` type is always the unit type `()`.
///
/// # Examples
///
/// Creating a [`MeshBuffer`] from a [`MeshGraph`] used to modify a cube:
///
/// ```rust
/// # extern crate decorum;
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use decorum::N64;
/// use nalgebra::Point3;
/// use plexus::buffer::MeshBufferN;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
/// use plexus::primitive::cube::Cube;
/// use plexus::primitive::generate::Position;
///
/// type E3 = Point3<N64>;
///
/// let mut graph: MeshGraph<E3> = Cube::new().polygons::<Position<E3>>().collect();
/// let key = graph.faces().nth(0).unwrap().key();
/// graph
/// .face_mut(key)
/// .unwrap()
/// .extrude_with_offset(1.0)
/// .unwrap();
///
/// let buffer: MeshBufferN<usize, E3> = graph.to_mesh_by_vertex().unwrap();
/// ```
///
/// # Errors
///
/// Returns an error if the graph does not have constant arity that is
/// compatible with the index buffer. Typically, a graph is triangulated
/// before being converted to a buffer.
///
/// [`MeshBuffer`]: crate::buffer::MeshBuffer
/// [`Buildable`]: crate::builder::Buildable
/// [`MeshGraph`]: crate::graph::MeshGraph
pub fn to_mesh_by_vertex<B>(&self) -> Result<B, B::Error>
where
B: Buildable<Facet = ()>,
B::Vertex: FromGeometry<G::Vertex>,
{
self.to_mesh_by_vertex_with(|vertex| vertex.get().clone().into_geometry())
}
/// Creates a [`Buildable`] mesh data structure from the graph.
///
/// The output is created from each unique vertex in the graph, which is
/// converted by the given function. No face data is used, and the `Facet`
/// type is always the unit type `()`.
///
/// # Errors
///
/// Returns an error if the vertex data cannot be inserted into the output,
/// there are arity conflicts, or the output does not support topology found
/// in the graph.
///
/// [`Buildable`]: crate::builder::Buildable
pub fn to_mesh_by_vertex_with<B, F>(&self, mut f: F) -> Result<B, B::Error>
where
B: Buildable<Facet = ()>,
F: FnMut(VertexView<&Self>) -> B::Vertex,
{
let mut builder = B::builder();
builder.surface_with(|builder| {
let mut keys = HashMap::with_capacity(self.vertex_count());
for vertex in self.vertices() {
keys.insert(vertex.key(), builder.insert_vertex(f(vertex))?);
}
builder.facets_with(|builder| {
for face in self.faces() {
let indices = face
.adjacent_vertices()
.map(|vertex| keys[&vertex.key()])
.collect::<SmallVec<[_; 8]>>();
builder.insert_facet(indices.as_slice(), ())?;
}
Ok(())
})
})?;
builder.build()
}
/// Creates a [`Buildable`] mesh data structure from the graph.
///
/// The output is created from each face in the graph. For each face, the
/// face data and data for each of its vertices is inserted into the mesh
/// via [`FromGeometry`]. This means that a vertex is inserted for each of
/// its adjacent faces.
///
/// # Errors
///
/// Returns an error if the vertex data cannot be inserted into the output,
/// there are arity conflicts, or the output does not support topology found
/// in the graph.
///
/// [`Buildable`]: crate::builder::Buildable
/// [`FromGeometry`]: crate::geometry::FromGeometry
pub fn to_mesh_by_face<B>(&self) -> Result<B, B::Error>
where
B: Buildable,
B::Vertex: FromGeometry<G::Vertex>,
B::Facet: FromGeometry<G::Face>,
{
self.to_mesh_by_face_with(|_, vertex| vertex.get().clone().into_geometry())
}
/// Creates a [`Buildable`] mesh data structure from the graph.
///
/// The output is created from each face in the graph. For each face, the
/// face data and data for each of its vertices is converted into the output
/// vertex data by the given function. This means that a vertex is inserted
/// for each of its adjacent faces. The data of each face is is inserted
/// into the output via [`FromGeometry`].
///
/// # Examples
///
/// Creating a [`MeshBuffer`] from a [`MeshGraph`] used to compute normals:
///
/// ```rust
/// # extern crate decorum;
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use decorum::R64;
/// use nalgebra::Point3;
/// use plexus::buffer::MeshBuffer;
/// use plexus::geometry::Vector;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
/// use plexus::primitive::cube::Cube;
/// use plexus::primitive::generate::Position;
/// use plexus::primitive::BoundedPolygon;
///
/// type E3 = Point3<R64>;
///
/// pub struct Vertex {
/// pub position: E3,
/// pub normal: Vector<E3>,
/// }
///
/// let graph: MeshGraph<E3> = Cube::new().polygons::<Position<E3>>().collect();
///
/// let buffer: MeshBuffer<BoundedPolygon<usize>, _> = graph
/// .to_mesh_by_face_with(|face, vertex| Vertex {
/// position: *vertex.position(),
/// normal: face.normal().unwrap(),
/// })
/// .unwrap();
/// ```
///
/// # Errors
///
/// Returns an error if the vertex data cannot be inserted into the output,
/// there are arity conflicts, or the output does not support topology found
/// in the graph.
///
/// [`MeshBuffer`]: crate::buffer::MeshBuffer
/// [`Buildable`]: crate::builder::Buildable
/// [`FromGeometry`]: crate::geometry::FromGeometry
/// [`MeshGraph`]: crate::graph::MeshGraph
pub fn to_mesh_by_face_with<B, F>(&self, mut f: F) -> Result<B, B::Error>
where
B: Buildable,
B::Facet: FromGeometry<G::Face>,
F: FnMut(FaceView<&Self>, VertexView<&Self>) -> B::Vertex,
{
let mut builder = B::builder();
builder.surface_with(|builder| {
for face in self.faces() {
let indices = face
.adjacent_vertices()
.map(|vertex| builder.insert_vertex(f(face, vertex)))
.collect::<Result<SmallVec<[_; 8]>, _>>()?;
builder.facets_with(|builder| {
builder.insert_facet(indices.as_slice(), face.get().clone())
})?;
}
Ok(())
})?;
builder.build()
}
}
impl<G> AsStorage<Vertex<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage(&self) -> &StorageTarget<Vertex<G>> {
self.core.as_storage_of::<Vertex<_>>()
}
}
impl<G> AsStorage<Arc<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage(&self) -> &StorageTarget<Arc<G>> {
self.core.as_storage_of::<Arc<_>>()
}
}
impl<G> AsStorage<Edge<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage(&self) -> &StorageTarget<Edge<G>> {
self.core.as_storage_of::<Edge<_>>()
}
}
impl<G> AsStorage<Face<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage(&self) -> &StorageTarget<Face<G>> {
self.core.as_storage_of::<Face<_>>()
}
}
impl<G> AsStorageMut<Vertex<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage_mut(&mut self) -> &mut StorageTarget<Vertex<G>> {
self.core.as_storage_mut_of::<Vertex<_>>()
}
}
impl<G> AsStorageMut<Arc<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage_mut(&mut self) -> &mut StorageTarget<Arc<G>> {
self.core.as_storage_mut_of::<Arc<_>>()
}
}
impl<G> AsStorageMut<Edge<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage_mut(&mut self) -> &mut StorageTarget<Edge<G>> {
self.core.as_storage_mut_of::<Edge<_>>()
}
}
impl<G> AsStorageMut<Face<G>> for MeshGraph<G>
where
G: GraphData,
{
fn as_storage_mut(&mut self) -> &mut StorageTarget<Face<G>> {
self.core.as_storage_mut_of::<Face<_>>()
}
}
/// Exposes a [`MeshBuilder`] that can be used to construct a [`MeshGraph`]
/// incrementally from _surfaces_ and _facets_.
///
/// See the [`builder`] module documentation for more.
///
/// # Examples
///
/// Creating a [`MeshGraph`] from a triangle:
///
/// ```rust
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use nalgebra::Point2;
/// use plexus::builder::Buildable;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
///
/// let mut builder = MeshGraph::<Point2<f64>>::builder();
/// let graph = builder
/// .surface_with(|builder| {
/// let a = builder.insert_vertex((0.0, 0.0))?;
/// let b = builder.insert_vertex((1.0, 0.0))?;
/// let c = builder.insert_vertex((0.0, 1.0))?;
/// builder.facets_with(|builder| builder.insert_facet(&[a, b, c], ()))
/// })
/// .and_then(|_| builder.build())
/// .unwrap();
/// ```
///
/// [`MeshBuilder`]: crate::builder::MeshBuilder
/// [`builder`]: crate::builder
/// [`MeshGraph`]: crate::graph::MeshGraph
impl<G> Buildable for MeshGraph<G>
where
G: GraphData,
{
type Builder = GraphBuilder<G>;
type Error = GraphError;
type Vertex = G::Vertex;
type Facet = G::Face;
fn builder() -> Self::Builder {
Default::default()
}
}
impl<G> Consistent for MeshGraph<G> where G: GraphData {}
impl<G> Default for MeshGraph<G>
where
G: GraphData,
{
fn default() -> Self {
MeshGraph::new()
}
}
impl<G> DynamicArity for MeshGraph<G>
where
G: GraphData,
{
type Dynamic = MeshArity;
fn arity(&self) -> Self::Dynamic {
MeshArity::from_components::<FaceView<_>, _>(self.faces())
}
}
impl<P, G> From<P> for MeshGraph<G>
where
P: Polygonal,
G: GraphData,
G::Vertex: FromGeometry<P::Vertex>,
{
fn from(polygon: P) -> Self {
let arity = polygon.arity();
MeshGraph::from_raw_buffers_with_arity(0..arity, polygon, arity)
.expect("inconsistent polygon")
}
}
impl<G> From<OwnedCore<G>> for MeshGraph<G>
where
G: GraphData,
{
fn from(core: OwnedCore<G>) -> Self {
MeshGraph { core }
}
}
impl<G> From<MeshGraph<G>> for OwnedCore<G>
where
G: GraphData,
{
fn from(graph: MeshGraph<G>) -> Self {
let MeshGraph { core, .. } = graph;
core
}
}
impl<E, G> FromEncoding<E> for MeshGraph<G>
where
E: FaceDecoder + VertexDecoder,
G: GraphData,
G::Face: FromGeometry<E::Face>,
G::Vertex: FromGeometry<E::Vertex>,
{
type Error = GraphError;
fn from_encoding(
vertices: <E as VertexDecoder>::Output,
faces: <E as FaceDecoder>::Output,
) -> Result<Self, Self::Error> {
let mut mutation = Mutation::from(MeshGraph::new());
let keys = vertices
.into_iter()
.map(|data| mutation::vertex::insert(&mut mutation, data.into_geometry()))
.collect::<Vec<_>>();
for (perimeter, data) in faces {
let perimeter = perimeter
.into_iter()
.map(|index| keys[index])
.collect::<SmallVec<[_; 4]>>();
let cache = FaceInsertCache::from_storage(&mutation, perimeter.as_slice())?;
let data = data.into_geometry();
mutation::face::insert_with(&mut mutation, cache, || (Default::default(), data))?;
}
mutation.commit().map_err(|(_, error)| error)
}
}
impl<G, P> FromIndexer<P, P> for MeshGraph<G>
where
G: GraphData,
G::Vertex: FromGeometry<P::Vertex>,
P: Map<usize> + Polygonal,
P::Output: Grouping<Group = P::Output> + IntoVertices + Polygonal<Vertex = usize>,
Vec<P::Output>: IndexBuffer<P::Output, Index = usize>,
{
type Error = GraphError;
// TODO: This appears to be a false positive. The `collect` is necessary,
// because the data is transformed and read randomly by index. See
// https://github.com/rust-lang/rust-clippy/issues/5991
#[allow(clippy::needless_collect)]
fn from_indexer<I, N>(input: I, indexer: N) -> Result<Self, Self::Error>
where
I: IntoIterator<Item = P>,
N: Indexer<P, P::Vertex>,
{
let mut mutation = Mutation::from(MeshGraph::new());
let (indices, vertices) = input.into_iter().index_vertices(indexer);
let vertices = vertices
.into_iter()
.map(|vertex| mutation::vertex::insert(&mut mutation, vertex.into_geometry()))
.collect::<Vec<_>>();
for face in indices {
let perimeter = face
.into_vertices()
.into_iter()
.map(|index| vertices[index])
.collect::<SmallVec<[_; 4]>>();
let cache = FaceInsertCache::from_storage(&mutation, &perimeter)?;
mutation::face::insert_with(&mut mutation, cache, Default::default)?;
}
mutation.commit().map_err(|(_, error)| error)
}
}
impl<G, P> FromIterator<P> for MeshGraph<G>
where
G: GraphData,
G::Vertex: FromGeometry<P::Vertex>,
P: Polygonal,
P::Vertex: Clone + Eq + Hash,
Self: FromIndexer<P, P>,
{
fn from_iter<I>(input: I) -> Self
where
I: IntoIterator<Item = P>,
{
Self::from_indexer(input, HashIndexer::default()).unwrap_or_else(|_| Self::default())
}
}
impl<P, G, H> FromRawBuffers<P, H> for MeshGraph<G>
where
P: IntoVertices + Polygonal,
P::Vertex: Integer + ToPrimitive + Unsigned,
G: GraphData,
G::Vertex: FromGeometry<H>,
{
type Error = GraphError;
fn from_raw_buffers<I, J>(indices: I, vertices: J) -> Result<Self, Self::Error>
where
I: IntoIterator<Item = P>,
J: IntoIterator<Item = H>,
{
let mut mutation = Mutation::from(MeshGraph::new());
let vertices = vertices
.into_iter()
.map(|vertex| mutation::vertex::insert(&mut mutation, vertex.into_geometry()))
.collect::<Vec<_>>();
for face in indices {
let mut perimeter = SmallVec::<[_; 4]>::with_capacity(face.arity());
for index in face.into_vertices() {
let index = <usize as NumCast>::from(index).unwrap();
perimeter.push(*vertices.get(index).ok_or(GraphError::TopologyNotFound)?);
}
let cache = FaceInsertCache::from_storage(&mutation, &perimeter)?;
mutation::face::insert_with(&mut mutation, cache, Default::default)?;
}
mutation.commit().map_err(|(_, error)| error)
}
}
impl<N, G, H> FromRawBuffersWithArity<N, H> for MeshGraph<G>
where
N: Integer + ToPrimitive + Unsigned,
G: GraphData,
G::Vertex: FromGeometry<H>,
{
type Error = GraphError;
/// Creates a [`MeshGraph`] from [raw buffers][`buffer`]. The arity of the
/// polygons in the index buffer must be given and constant.
///
/// # Errors
///
/// Returns an error if the arity of the index buffer is not constant, any
/// index is out of bounds, or there is an error inserting topology into the
/// graph.
///
/// # Examples
///
/// ```rust
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use nalgebra::Point3;
/// use plexus::graph::MeshGraph;
/// use plexus::index::{Flat3, LruIndexer};
/// use plexus::prelude::*;
/// use plexus::primitive::generate::Position;
/// use plexus::primitive::sphere::UvSphere;
///
/// type E3 = Point3<f64>;
///
/// let (indices, positions) = UvSphere::new(16, 16)
/// .polygons::<Position<E3>>()
/// .triangulate()
/// .index_vertices::<Flat3, _>(LruIndexer::with_capacity(256));
/// let mut graph = MeshGraph::<E3>::from_raw_buffers_with_arity(indices, positions, 3).unwrap();
/// ```
///
/// [`buffer`]: crate::buffer
/// [`MeshGraph`]: crate::graph::MeshGraph
fn from_raw_buffers_with_arity<I, J>(
indices: I,
vertices: J,
arity: usize,
) -> Result<Self, Self::Error>
where
I: IntoIterator<Item = N>,
J: IntoIterator<Item = H>,
{
use itertools::Itertools;
if arity < 3 {
return Err(GraphError::ArityNonPolygonal);
}
let mut mutation = Mutation::from(MeshGraph::new());
let vertices = vertices
.into_iter()
.map(|vertex| mutation::vertex::insert(&mut mutation, vertex.into_geometry()))
.collect::<Vec<_>>();
for face in &indices
.into_iter()
.map(|index| <usize as NumCast>::from(index).unwrap())
.chunks(arity)
{
let face = face.collect::<Vec<_>>();
if face.len() != arity {
// Index buffer length is not a multiple of arity.
return Err(GraphError::ArityConflict {
expected: arity,
actual: face.len(),
});
}
let mut perimeter = SmallVec::<[_; 4]>::with_capacity(arity);
for index in face {
perimeter.push(*vertices.get(index).ok_or(GraphError::TopologyNotFound)?);
}
let cache = FaceInsertCache::from_storage(&mutation, &perimeter)?;
mutation::face::insert_with(&mut mutation, cache, Default::default)?;
}
mutation.commit().map_err(|(_, error)| error)
}
}
impl<G> IntoPolygons for MeshGraph<G>
where
G: GraphData,
{
type Output = vec::IntoIter<Self::Polygon>;
type Polygon = UnboundedPolygon<G::Vertex>;
fn into_polygons(self) -> Self::Output {
use crate::IteratorExt as _;
self.faces()
.map(|face| {
// The arity of a face in a graph must be polygonal (three or
// higher) so this should never fail.
face.adjacent_vertices()
.map(|vertex| vertex.get().clone())
.try_collect()
.expect_consistent()
})
.collect::<Vec<_>>()
.into_iter()
}
}
impl<G> Parametric for MeshGraph<G>
where
G: GraphData,
{
type Data = G;
}
impl<G> StaticArity for MeshGraph<G>
where
G: GraphData,
{
type Static = (usize, Option<usize>);
const ARITY: Self::Static = (3, None);
}
impl<T, H, G, const A: usize> TryFrom<MeshBuffer<Flat<T, A>, H>> for MeshGraph<G>
where
Constant<A>: ToType,
TypeOf<A>: NonZero,
T: Copy + Integer + NumCast + Unsigned,
H: Clone,
G: GraphData,
G::Vertex: FromGeometry<H>,
{
type Error = GraphError;
/// Creates a [`MeshGraph`] from a flat [`MeshBuffer`]. The arity of the
/// polygons in the index buffer must be known and constant.
///
/// # Errors
///
/// Returns an error if a [`MeshGraph`] cannot represent the topology in the
/// [`MeshBuffer`].
///
/// # Examples
///
/// ```rust
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use nalgebra::Point2;
/// use plexus::buffer::MeshBuffer;
/// use plexus::graph::MeshGraph;
/// use plexus::index::Flat4;
/// use plexus::prelude::*;
/// use std::convert::TryFrom;
///
/// type E2 = Point2<f64>;
///
/// let buffer = MeshBuffer::<Flat4, E2>::from_raw_buffers(
/// vec![0u64, 1, 2, 3],
/// vec![(0.0f64, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)],
/// )
/// .unwrap();
/// let mut graph = MeshGraph::<E2>::try_from(buffer).unwrap();
/// ```
///
/// [`MeshBuffer`]: crate::buffer::MeshBuffer
/// [`MeshGraph`]: crate::graph::MeshGraph
fn try_from(buffer: MeshBuffer<Flat<T, A>, H>) -> Result<Self, Self::Error> {
let arity = buffer.arity();
let (indices, vertices) = buffer.into_raw_buffers();
MeshGraph::from_raw_buffers_with_arity(indices, vertices, arity)
}
}
impl<P, H, G> TryFrom<MeshBuffer<P, H>> for MeshGraph<G>
where
P: Grouping<Group = P> + IntoVertices + Polygonal,
P::Vertex: Copy + Integer + NumCast + Unsigned,
H: Clone,
G: GraphData,
G::Vertex: FromGeometry<H>,
{
type Error = GraphError;
/// Creates a [`MeshGraph`] from a structured [`MeshBuffer`].
///
/// # Errors
///
/// Returns an error if a [`MeshGraph`] cannot represent the topology in the
/// [`MeshBuffer`].
///
/// # Examples
///
/// ```rust
/// # extern crate nalgebra;
/// # extern crate plexus;
/// #
/// use nalgebra::Point2;
/// use plexus::buffer::MeshBuffer;
/// use plexus::graph::MeshGraph;
/// use plexus::prelude::*;
/// use plexus::primitive::Tetragon;
/// use std::convert::TryFrom;
///
/// type E2 = Point2<f64>;
///
/// let buffer = MeshBuffer::<Tetragon<u64>, E2>::from_raw_buffers(
/// vec![Tetragon::new(0u64, 1, 2, 3)],
/// vec![(0.0f64, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 1.0)],
/// )
/// .unwrap();
/// let mut graph = MeshGraph::<E2>::try_from(buffer).unwrap();
/// ```
///
/// [`MeshBuffer`]: crate::buffer::MeshBuffer
/// [`MeshGraph`]: crate::graph::MeshGraph
fn try_from(buffer: MeshBuffer<P, H>) -> Result<Self, Self::Error> {
let (indices, vertices) = buffer.into_raw_buffers();
MeshGraph::from_raw_buffers(indices, vertices)
}
}
#[cfg(test)]
mod tests {
use decorum::R64;
use nalgebra::{Point2, Point3, Vector3};
use num::Zero;
use crate::buffer::MeshBuffer3;
use crate::graph::{GraphData, GraphError, MeshGraph};
use crate::prelude::*;
use crate::primitive::generate::Position;
use crate::primitive::sphere::UvSphere;
use crate::primitive::NGon;
type E2 = Point2<R64>;
type E3 = Point3<R64>;
#[test]
fn collect() {
let graph: MeshGraph<Point3<f64>> = UvSphere::new(3, 2)
.polygons::<Position<E3>>() // 6 triangles, 18 vertices.
.collect();
assert_eq!(5, graph.vertex_count());
assert_eq!(18, graph.arc_count());
assert_eq!(6, graph.face_count());
}
#[test]
fn iterate() {
let mut graph: MeshGraph<Point3<f64>> = UvSphere::new(4, 2)
.polygons::<Position<E3>>() // 8 triangles, 24 vertices.
.collect();
assert_eq!(6, graph.vertices().count());
assert_eq!(24, graph.arcs().count());
assert_eq!(8, graph.faces().count());
for vertex in graph.vertices() {
// Every vertex is connected to 4 triangles with 4 (incoming) arcs.
// Traversal of topology should be possible.
assert_eq!(4, vertex.incoming_arcs().count());
}
for mut vertex in graph.vertex_orphans() {
// Data should be mutable.
*vertex.get_mut() += Vector3::zero();
}
}
#[test]
fn isolate_disjoint_subgraphs() {
// Construct a graph from a quadrilateral.
let graph = MeshGraph::<E2>::from_raw_buffers(
vec![NGon([0u32, 1, 2, 3])],
vec![(1.0, 0.0), (2.0, 0.0), (2.0, 1.0), (1.0, 1.0)],
)
.unwrap();
assert_eq!(1, graph.disjoint_subgraph_vertices().count());
// Construct a graph with two disjoint quadrilaterals.
let graph = MeshGraph::<E2>::from_raw_buffers(
vec![NGon([0u32, 1, 2, 3]), NGon([4, 5, 6, 7])],
vec![
(-2.0, 0.0),
(-1.0, 0.0),
(-1.0, 1.0),
(-2.0, 1.0),
(1.0, 0.0),
(2.0, 0.0),
(2.0, 1.0),
(1.0, 1.0),
],
)
.unwrap();
assert_eq!(2, graph.disjoint_subgraph_vertices().count());
}
#[test]
fn non_manifold_error_deferred() {
let graph: MeshGraph<E3> = UvSphere::new(32, 32)
.polygons::<Position<E3>>()
.triangulate()
.collect();
// This conversion will join faces by a single vertex, but ultimately
// creates a manifold.
let _: MeshBuffer3<usize, E3> = graph.to_mesh_by_face().unwrap();
}
#[test]
fn error_on_non_manifold() {
// Construct a graph with a "fan" of three triangles sharing the same
// edge along the Z-axis. The edge would have three associated faces,
// which should not be possible.
let graph = MeshGraph::<Point3<i32>>::from_raw_buffers(
vec![NGon([0u32, 1, 2]), NGon([0, 1, 3]), NGon([0, 1, 4])],
vec![(0, 0, 1), (0, 0, -1), (1, 0, 0), (0, 1, 0), (1, 1, 0)],
);
assert_eq!(graph.err().unwrap(), GraphError::TopologyConflict);
}
// This test is a sanity check for iterators over orphan views and the
// unsafe transmutations used to coerce lifetimes.
#[test]
fn read_write_geometry_ref() {
struct Weight;
impl GraphData for Weight {
type Vertex = Point3<f64>;
type Arc = ();
type Edge = ();
type Face = u64;
}
// Create a graph with a floating-point weight in each face. Use an
// iterator over orphan views to write data to each face.
let mut graph: MeshGraph<Weight> = UvSphere::new(4, 4).polygons::<Position<E3>>().collect();
let value = 123_456_789;
for mut face in graph.face_orphans() {
*face.get_mut() = value;
}
// Read the data of each face to ensure it is what we expect.
for face in graph.faces() {
assert_eq!(value, *face.get());
}
}
}