logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//! Ordering and comparisons.
//!
//! This module provides traits and functions for comparing floating-point and
//! other partially ordered values. For primitive floating-point types, a total
//! ordering is provided via the `FloatEq` and `FloatOrd` traits:
//!
//! $$-\infin<\cdots<0<\cdots<\infin<\text{NaN}$$
//!
//! Note that both zero and `NaN` have more than one representation in IEEE-754
//! encoding. Given the set of zero representations $Z$ and set of `NaN`
//! representations $N$, this ordering coalesces `-0`, `+0`, and `NaN`s such
//! that:
//!
//! $$
//! \begin{aligned}
//! a=b&\mid a\in{Z},~b\in{Z}\cr\[1em\]
//! a=b&\mid a\in{N},~b\in{N}\cr\[1em\]
//! n>x&\mid n\in{N},~x\notin{N}
//! \end{aligned}
//! $$
//!
//! These same semantics are used in the `Eq` and `Ord` implementations for
//! `ContrainedFloat`, which includes the `Total`, `NotNan`, and `Finite` type
//! definitions.
//!
//! # Examples
//!
//! Comparing `f64` values using a total ordering:
//!
//! ```rust
//! use core::cmp::Ordering;
//! use decorum::cmp::FloatOrd;
//! use decorum::Nan;
//!
//! let x = f64::NAN;
//! let y = 1.0f64;
//!
//! let (min, max) = match x.float_cmp(&y) {
//!     Ordering::Less | Ordering::Equal => (x, y),
//!     _ => (y, x),
//! };
//! ```
//!
//! Computing a pairwise minimum that propagates `NaN`s:
//!
//! ```rust
//! use decorum::cmp;
//! use decorum::Nan;
//!
//! let x = f64::NAN;
//! let y = 1.0f64;
//!
//! // `Nan` is incomparable and represents an undefined computation with respect to
//! // ordering, so `min` is assigned a `NaN` value in this example.
//! let min = cmp::min_or_undefined(x, y);
//! ```

use core::cmp::Ordering;

use crate::canonical::ToCanonicalBits;
use crate::constraint::Constraint;
use crate::primitive::Primitive;
use crate::proxy::ConstrainedFloat;
use crate::{Float, Nan};

/// Equivalence relation for floating-point primitives.
///
/// `FloatEq` agrees with the total ordering provided by `FloatOrd`. See the
/// module documentation for more. Importantly, given the set of `NaN`
/// representations $N$, `FloatEq` expresses:
///
/// $$
/// \begin{aligned}
/// a=b&\mid a\in{N},~b\in{N}\cr\[1em\]
/// n\ne x&\mid n\in{N},~x\notin{N}
/// \end{aligned}
/// $$
///
/// # Examples
///
/// Comparing `NaN`s using primitive floating-point types:
///
/// ```rust
/// use decorum::cmp::FloatEq;
/// use decorum::Infinite;
///
/// let x = 0.0f64 / 0.0; // `NaN`.
/// let y = f64::INFINITY - f64::INFINITY; // `NaN`.
///
/// assert!(x.float_eq(&y));
/// ```
pub trait FloatEq {
    fn float_eq(&self, other: &Self) -> bool;
}

impl<T> FloatEq for T
where
    T: Float + Primitive,
{
    fn float_eq(&self, other: &Self) -> bool {
        self.to_canonical_bits() == other.to_canonical_bits()
    }
}

impl<T> FloatEq for [T]
where
    T: Float + Primitive,
{
    fn float_eq(&self, other: &Self) -> bool {
        if self.len() == other.len() {
            self.iter().zip(other.iter()).all(|(a, b)| a.float_eq(b))
        }
        else {
            false
        }
    }
}

/// Total ordering of primitive floating-point types.
///
/// `FloatOrd` expresses the total ordering:
///
/// $$-\infin<\cdots<0<\cdots<\infin<\text{NaN}$$
///
/// This trait can be used to compare primitive floating-point types without the
/// need to wrap them within a proxy type. See the module documentation for more
/// about the ordering used by `FloatOrd` and proxy types.
pub trait FloatOrd {
    fn float_cmp(&self, other: &Self) -> Ordering;
}

impl<T> FloatOrd for T
where
    T: Float + Primitive,
{
    fn float_cmp(&self, other: &Self) -> Ordering {
        match self.partial_cmp(&other) {
            Some(ordering) => ordering,
            None => {
                if self.is_nan() {
                    if other.is_nan() {
                        Ordering::Equal
                    }
                    else {
                        Ordering::Greater
                    }
                }
                else {
                    Ordering::Less
                }
            }
        }
    }
}

impl<T> FloatOrd for [T]
where
    T: Float + Primitive,
{
    fn float_cmp(&self, other: &Self) -> Ordering {
        match self
            .iter()
            .zip(other.iter())
            .map(|(a, b)| a.float_cmp(b))
            .find(|ordering| *ordering != Ordering::Equal)
        {
            Some(ordering) => ordering,
            None => self.len().cmp(&other.len()),
        }
    }
}

/// Partial ordering of types with intrinsic representations for undefined
/// comparisons.
///
/// `IntrinsicOrd` is similar to `PartialOrd`, but provides a pairwise
/// minimum-maximum API and, for types without a total ordering, is only
/// implemented for such types that additionally have intrinsic representations
/// for _undefined_, such as the `None` variant of `Option` and `NaN`s for
/// floating-point primitives. `PrimitiveOrd` is also _closed_ and always
/// compares two values of the same type.
///
/// This trait is also implemented for numeric types with total orderings, and
/// can be used for comparisons that propagate `NaN`s for floating-point
/// primitives (unlike `PartialOrd`, which expresses comparisons of types `T`
/// and `U` with the extrinsic type `Option<Ordering>`).
///
/// See the `min_or_undefined` and `max_or_undefined` functions.
pub trait IntrinsicOrd: Copy + PartialOrd + Sized {
    /// Returns `true` if a value encodes _undefined_, otherwise `false`.
    ///
    /// Prefer this predicate over direct comparisons. For floating-point
    /// representations, `NaN` is considered undefined, but direct comparisons
    /// with `NaN` values should be avoided.
    fn is_undefined(&self) -> bool;

    /// Compares two values and returns their pairwise minimum and maximum.
    ///
    /// This function returns a representation of _undefined_ for both the
    /// minimum and maximum if either of the inputs are _undefined_ or the
    /// inputs cannot be compared, **even if undefined values are ordered or the
    /// type has a total ordering**. Undefined values are always propagated.
    ///
    /// # Examples
    ///
    /// Propagating `NaN` values when comparing proxy types with a total
    /// ordering:
    ///
    /// ```rust
    /// use decorum::cmp::{self, IntrinsicOrd};
    /// use decorum::{Nan, Total};
    ///
    /// let x: Total<f64> = 0.0.into();
    /// let y: Total<f64> = (0.0 / 0.0).into(); // `NaN`.
    ///
    /// // `Total` provides a total ordering in which zero is less than `NaN`, but `NaN`
    /// // is considered undefined and is the result of the intrinsic comparison.
    /// assert!(y.is_undefined());
    /// assert!(cmp::min_or_undefined(x, y).is_undefined());
    /// ```
    fn min_max_or_undefined(&self, other: &Self) -> (Self, Self);

    fn min_or_undefined(&self, other: &Self) -> Self {
        self.min_max_or_undefined(other).0
    }

    fn max_or_undefined(&self, other: &Self) -> Self {
        self.min_max_or_undefined(other).1
    }
}
macro_rules! impl_intrinsic_ord {
    (no_nan_total => $t:ty) => {
        impl IntrinsicOrd for $t {
            fn is_undefined(&self) -> bool {
                false
            }

            fn min_max_or_undefined(&self, other: &Self) -> (Self, Self) {
                match self.partial_cmp(other) {
                    Some(ordering) => match ordering {
                        Ordering::Less | Ordering::Equal => (*self, *other),
                        _ => (*other, *self),
                    },
                    _ => unreachable!(),
                }
            }
        }
    };
    (nan_partial => $t:ty) => {
        impl IntrinsicOrd for $t {
            fn is_undefined(&self) -> bool {
                self.is_nan()
            }

            fn min_max_or_undefined(&self, other: &Self) -> (Self, Self) {
                match self.partial_cmp(other) {
                    Some(ordering) => match ordering {
                        Ordering::Less | Ordering::Equal => (*self, *other),
                        _ => (*other, *self),
                    },
                    _ => (Nan::NAN, Nan::NAN),
                }
            }
        }
    };
}
impl_intrinsic_ord!(no_nan_total => isize);
impl_intrinsic_ord!(no_nan_total => i8);
impl_intrinsic_ord!(no_nan_total => i16);
impl_intrinsic_ord!(no_nan_total => i32);
impl_intrinsic_ord!(no_nan_total => i64);
impl_intrinsic_ord!(no_nan_total => i128);
impl_intrinsic_ord!(no_nan_total => usize);
impl_intrinsic_ord!(no_nan_total => u8);
impl_intrinsic_ord!(no_nan_total => u16);
impl_intrinsic_ord!(no_nan_total => u32);
impl_intrinsic_ord!(no_nan_total => u64);
impl_intrinsic_ord!(no_nan_total => u128);
impl_intrinsic_ord!(nan_partial => f32);
impl_intrinsic_ord!(nan_partial => f64);

// Note that it is not necessary for `NaN` to be a member of the constraint.
// This implementation explicitly detects `NaN`s and emits `NaN` as the
// maximum and minimum (it does not use `FloatOrd`).
impl<T, P> IntrinsicOrd for ConstrainedFloat<T, P>
where
    T: Float + IntrinsicOrd + Primitive,
    P: Constraint<T>,
{
    fn is_undefined(&self) -> bool {
        self.into_inner().is_nan()
    }

    fn min_max_or_undefined(&self, other: &Self) -> (Self, Self) {
        // This function operates on primitive floating-point values. This
        // avoids the need for implementations for each combination of proxy and
        // constraint (proxy types do not always implement `Nan`, but primitive
        // types do).
        let a = self.into_inner();
        let b = other.into_inner();
        let (min, max) = a.min_max_or_undefined(&b);
        // Both `min` and `max` are `NaN` if `a` and `b` are incomparable.
        if min.is_nan() {
            let nan = T::NAN.into();
            (nan, nan)
        }
        else {
            (min.into(), max.into())
        }
    }
}

impl<T> IntrinsicOrd for Option<T>
where
    T: Copy + PartialOrd,
{
    fn is_undefined(&self) -> bool {
        self.is_none()
    }

    fn min_max_or_undefined(&self, other: &Self) -> (Self, Self) {
        match (self.as_ref(), other.as_ref()) {
            (Some(a), Some(b)) => match a.partial_cmp(b) {
                Some(ordering) => match ordering {
                    Ordering::Less | Ordering::Equal => (Some(*a), Some(*b)),
                    _ => (Some(*b), Some(*a)),
                },
                _ => (None, None),
            },
            _ => (None, None),
        }
    }
}

/// Partial maximum of types with intrinsic representations for undefined.
///
/// See the `IntrinsicOrd` trait.
pub fn max_or_undefined<T>(a: T, b: T) -> T
where
    T: IntrinsicOrd,
{
    a.max_or_undefined(&b)
}

/// Partial minimum of types with intrinsic representations for undefined.
///
/// See the `IntrinsicOrd` trait.
pub fn min_or_undefined<T>(a: T, b: T) -> T
where
    T: IntrinsicOrd,
{
    a.min_or_undefined(&b)
}

#[cfg(test)]
mod tests {
    use num_traits::{One, Zero};

    use crate::cmp::{self, FloatEq, IntrinsicOrd};
    use crate::{Nan, Total};

    #[test]
    #[allow(clippy::eq_op)]
    #[allow(clippy::zero_divided_by_zero)]
    fn primitive_eq() {
        let x = 0.0f64 / 0.0f64; // `NaN`.
        let y = f64::INFINITY + f64::NEG_INFINITY; // `NaN`.
        let xs = [1.0f64, f64::NAN, f64::INFINITY];
        let ys = [1.0f64, f64::NAN, f64::INFINITY];

        assert!(x.float_eq(&y));
        assert!(xs.float_eq(&ys));
    }

    #[test]
    fn intrinsic_ord_option() {
        let zero = Some(0u64);
        let one = Some(1u64);

        assert_eq!(zero, cmp::min_or_undefined(zero, one));
        assert_eq!(one, cmp::max_or_undefined(zero, one));
        assert!(cmp::min_or_undefined(None, zero).is_undefined());
    }

    #[test]
    #[allow(clippy::float_cmp)]
    fn intrinsic_ord_primitive() {
        let zero = 0.0f64;
        let one = 1.0f64;

        assert_eq!(zero, cmp::min_or_undefined(zero, one));
        assert_eq!(one, cmp::max_or_undefined(zero, one));
        assert!(cmp::min_or_undefined(f64::NAN, zero).is_undefined());
    }

    #[test]
    fn intrinsic_ord_proxy() {
        let nan = Total::<f64>::NAN;
        let zero = Total::zero();
        let one = Total::one();

        assert_eq!((zero, one), zero.min_max_or_undefined(&one));
        assert_eq!((zero, one), one.min_max_or_undefined(&zero));

        assert_eq!((nan, nan), nan.min_max_or_undefined(&zero));
        assert_eq!((nan, nan), zero.min_max_or_undefined(&nan));
        assert_eq!((nan, nan), nan.min_max_or_undefined(&nan));

        assert_eq!(nan, cmp::min_or_undefined(nan, zero));
        assert_eq!(nan, cmp::max_or_undefined(nan, zero));
        assert_eq!(nan, cmp::min_or_undefined(nan, nan));
        assert_eq!(nan, cmp::max_or_undefined(nan, nan));
    }
}